화학공학소재연구정보센터
Biotechnology Letters, Vol.26, No.12, 1007-1011, 2004
Toxicity and degradation of metal-complexed cyanide by a bacterial consortium under sulfate-reducing conditions
Free cyanide at 1 mM decreased the initial sulfate reduction rate of a batch culture of granular sludge from 0.3 to 0.14 mmol d(-1) g(-1) SS (suspended solid), whereas 0.5 mM cyanide had a minimal effect (0.25 mmol d(-1) g(-1) SS). The order of toxicity of metal-complexed cyanides to the sludge was as follows: zinc-complexed cyanide (most toxic) > free cyanide = nickel-complexed cyanide > copper-complexed cyanide (least toxic), which also corresponds well with the order of the stability (dissociation) constants of the metal-cyanide complexes. A consortium degrading cyanide was enriched using nickel cyanide as the sole nitrogen source. This consortium completely removed 0.5 mM of nickel-complexed cyanide under sulfate-reducing conditions in 11 d. Analysis of clone library of 16S rRNA genes shows that the consortium was composed of three major phylotypes including Desulfovibrio.