화학공학소재연구정보센터
Chinese Journal of Chemical Engineering, Vol.12, No.2, 310-314, 2004
Dense pellicular agarose-glass beads for expanded bed application: Flow hydrodynamics and solid phase classifications
Two dense pellicular agarose-glass matrices of different sizes and densities, i.e., AG-S and AG-L, have been characterized for their bed expansion behavior, flow hydrodynamics and particle classifications in an expanded bed system. A 26 mm ID column with side ports was used for sampling the liquid-solid suspension during expanded bed operations. Measurements of the collected solid phase at different column positions yielded the particle size and density distribution data. It was found that the composite matrices showed particle size as well as density classifications along the column axis, i.e., both the size and density of each matrix decreased with increasing the axial bed height. Their axial classifications were expressed by a correlation related to both the particle size and density as a function of the dimensionless axial bed height. The correlation was found to fairly describe the solid phase classifications in the expanded bed system. Moreover, it can also be applied to other two commercial solid matrices designed for expanded bed applications.