Chinese Journal of Chemical Engineering, Vol.12, No.3, 357-362, 2004
Monte Carlo simulation for the adsorption of symmetric triblock copolymers
The adsorption behavior of symmetric triblock copolymers, A(m/2)B(n)A(m/2), from a nonselective solvent at solid-liquid interface has been studied by Monte Carlo simulations on a simple lattice model. Either segment A or segment B is attractive, while the other is non-attractive to the surface. Influences of the adsorption energy, bulk concentration, chain composition and chain length on the microstructure of adsorbed layers are presented. The results show that the total surface coverage and the adsorption amount increases monotonically as the bulk concentration increases. The larger the adsorption energy and the higher the fraction of adsorbing segments, the higher the total surface coverage is exhibited. The product of surface coverage and the proportion of non-attractive segments are nearly independent of the chain length, and the logarithm of the adsorption amount is a linear function of the reciprocal of the reduced temperature. When the adsorption energy is larger, the adsorption amount exhibits a maximum as the fraction of adsorbing segment increases. The adsorption isotherms of copolymers with different length of non-attractive segments can be mapped onto a single curve under given adsorption energy. The adsorption layer thickness decreases as the adsorption energy and the fraction of adsorbing segments increases, but it increases as the length of non-attractive segments increases. The tails mainly govern the adsorption layer thickness.