Journal of the American Chemical Society, Vol.126, No.39, 12306-12315, 2004
Chemoenzymatic synthesis and high-throughput screening of an aminoglycoside-polyamine library: identification of high-affinity displacers and DNA-binding ligands
Chemoenzymatic parallel synthesis and high-throughput screening were employed to develop a multivalent aminoglycoside-polyamine library for use as high-affinity cation-exchange displacers and DNA-binding ligands. Regioselective lipase-catalyzed acylation, followed by chemical aminolysis, was used to generate vinyl carbonate and vinyl carbamate linkers, respectively, of the aminoglycosidic cores. These were further derivatized with polyamines, leading to library generation. A parallel batch-displacement assay was employed to identify the efficacy of the library candidates as potential displacers for protein purification. Using this approach, low-molecular-mass displacers with affinities higher than those previously observed have been identified. The aminoglycoside-polyamine library was also screened for DNA binding efficacy using an ethidium bromide displacement assay. These highly cationic molecules exhibited strong DNA-binding properties and may have potential for enhanced gene delivery.