Polymer, Vol.45, No.17, 5775-5784, 2004
Kinetics of surface grafting on polyisoprene latexes by reaction calorimetry
The two-component redox-initiation system, cumene hydroperoxide (CHP) and tetraethylene pentamine (TEPA), was used to polymerize dimethylaminoethyl methacrylate (DMAEMA) in the presence of synthetic polyisoprene latexes. The modified latex particles are postulated to possess a 'hairy layer' of surface-grafted poly(DMAEMA) chains formed via an abstraction reaction between cumyloxy radicals and the isoprene moieties present in the seed polymer. The modified latexes exhibited enhanced colloidal stability to low pH, and dynamic light scattering showed that the apparent particle size was sensitive to pH. The rate of polymerization was followed by reaction calorimetry. No steady-state polymerization was observed, with a continual increase in the number of propagating chains at all initiator feed rates investigated. The data for particle size and colloidal stability, together with the calorimetric data, are consistent with radical production at the particle surface, and with abstraction near the interface being a rare event. Further, there is evidence that radical production by the redox couple is relatively slow. While this 'topology-controlled' reaction is responsible for the formation of the hairy layer and latex stability, the dominant polymerization process appears to be the formation of ungrafted poly(DMAEMA) in the water phase. (C) 2004 Elsevier Ltd. All rights reserved.