화학공학소재연구정보센터
Polymer Engineering and Science, Vol.43, No.10, 1657-1665, 2003
Compensating for die swell in the design of profile dies
Because of the effects of die swell, the final shape of an extrudate is often substantially different from that of the exit opening of the die. As a result, the design of profile dies producing complex shapes often involves more than just "balancing" the die but also compensating for the effects of die swell. Typically, a successful design of such dies is achieved only through much "cut and try." However, with the use of a fully three-dimensional finite element flow algorithm along with quick mesh generating capabilities, the usual cut and try involved in the design of many profile dies can be greatly reduced, if not eliminated. This paper demonstrates how the effects of die swell can be compensated for in the design of profile dies. For profiles with one plane of symmetry, this includes compensating for the sideways translation of the extrudate as well as the change in shape that the extrudate experiences. Completely asymmetric profiles undergo a "twisting" downstream of the die. This twisting, which appears not to have been reported in the literature (at least for isothermal extrusion), is also accounted for here, along with the change in shape that the extrudate undergoes. The translation or twisting of profiles downstream of a die is often attributed to non-Newtonian or non-isothermal effects. Only isothermal Newtonian examples are considered here. These results clearly show that asymmetry of the profile will result in a translation and twisting of the extrudate even in the isothermal Newtonian case.