화학공학소재연구정보센터
Applied Microbiology and Biotechnology, Vol.66, No.4, 422-429, 2005
Protein engineering of toluene ortho-monooxygenase of Burkholderia cepacia G4 for regiospecific hydroxylation of indole to form various indigoid compounds
Previous work showed that random mutagenesis produced a mutant of toluene ortho-monooxygenase (TOM) of Burkholderia cepacia G4 containing the V106A substitution in the hydroxylase alpha-subunit (TomA3) that changed the color of the cell suspension from wild-type brown to green in rich medium. Here, DNA shuffling was used to isolate a random TOM mutant that turned blue due to mutation TomA3 A113V. To better understand the TOM reaction mechanism, we studied the specificity of indole hydroxylation using a spectrum of colored TOM mutants expressed in Escherichia coli TG1 and formed as a result of saturation mutagenesis at TomA3 positions A113 and V106. Colonies expressing these altered enzymes ranged in color from blue through green and purple to orange; and the enzyme products were identified using thin-layer chromatography, high performance liquid chromatography, and liquid chromatography - mass spectroscopy. Derived from the single TOM template, enzymes were identified that produced primarily isoindigo (wild-type TOM), indigo ( A113V), indirubin (A113I), and isatin (A113H and V106A/A113G). The discovery that wildtype TOM formed isoindigo via C-2 hydroxylation of the indole pyrrole ring makes this the first oxygenase shown to form this compound. Variant TOM A113G was unable to form indigo, indirubin, or isoindigo ( did not hydroxylate the indole pyrrole ring), but produced 4-hydroxyindole and unknown yellow compounds from C-4 hydroxylation of the indole benzene ring. Mutations at V106 in addition to A113G restored C-3 indole oxidation, so along with C-2 indole oxidation, isatin, indigo, and indirubin were formed. Other TomA3 V106/A113 mutants with hydrophobic, polar, or charged amino acids in place of the Val and/or Ala residues hydroxylated indole at the C-3 and C-2 positions, forming isatin, indigo, and indirubin in a variety of distributions. Hence, for the first time, a single enzyme was genetically modified to produce a wide range of colors from indole.