화학공학소재연구정보센터
Inorganic Chemistry, Vol.43, No.20, 6455-6463, 2004
Structural characterization and electronic properties determination by high-field and high-frequency EPR of a series of five-coordinated Mn(II) complexes
The isolation, structural characterization, and electronic properties of a series of high-spin mononuclear five-coordinated Mn(II) complexes, [Mn(terpy)(X)(2)] (terpy = 2, 2':6',2"-terpyridine; X = l(-) (1), Br-(2), Cl- (3), or SCN- (4)), are reported. The X-ray structures of the complexes reveal that the manganese ion lies in the center of a distorted trigonal bipyramid for complexes 1, 2, and 4, while complex 3 is better described as a distorted square pyramid. The electronic properties of 1-4 were investigated by high-field and high-frequency EPR spectroscopy (HF-EPR) performed between 5 and 30 K. The powder HF-EPR spectra have been recorded in high-field-limit conditions (95-285 GHz) (D much less than gbetaB). The spectra are thus simplified, allowing an easy interpretation of the experimental data and an accurate determination of the spin Hamiltonian parameters. The magnitude of D varies between 0.26 and 1.00 cm(-1) with the nature of the anionic ligand. Thanks to low-temperature EPR experiments, the sign of D was unambiguously determined. D is positive for the iodo and bromo complexes and negative for the chloro and thiocyano ones. A structural correlation is proposed. Each complex is characterized by a significant rhombicity with E/D values between 0.17 and 0.29, reflecting the distorted geometry observed around the manganese. Finally, we compared the spin Hamiltonian parameters of our five-coordinated complexes and those previously reported for other analogous series of dihalo four-and six-coordinated complexes. The effect of the coordination number and of the geometry of the Mn(II) complexes on the spin Hamiltonian parameters is discussed.