화학공학소재연구정보센터
Journal of Chemical Physics, Vol.121, No.8, 3816-3828, 2004
Stability of thin polymer films: Influence of solvents
The interface and surface properties and the wetting behavior of polymer-solvent mixtures are investigated using Monte Carlo simulations and self-consistent field calculations. We carry out Monte Carlo simulations in the framework of a coarse-grained bead-spring model using short chains (oligomers) of N-P=5 beads and a monomeric solvent, N-S=1. The self-consistent field calculations are based on a simple phenomenological equation of state for compressible binary mixtures and we employ Gaussian chain model. The bulk behavior of the polymer-solvent mixture belongs to type III in the classification of van Konynenburg and Scott [Phil. Trans. R. Soc. London, Ser. A 298, 495 (1980)]. It is characterized by a triple line on which the polymer-liquid coexists with solvent-vapor and a solvent-rich liquid. The solvent is not homogeneously distributed across the dense polymer film but tends to accumulate at the surface and the polymer-vapor interface. This solvent enrichment at the interface and surface becomes more pronounced upon increasing the vapor pressure and alters the surface and interface tensions. This effect gives rise to a nonmonotonic dependence of the contact angle on the vapor pressure and one might observe reentrant wetting. The results of the Monte Carlo simulations and the self-consistent field calculations qualitatively agree. The profiles of drops are investigated by Monte Carlo simulations and a pronounced solvent enrichment is observed at the wedge formed by the substrate and the liquid-vapor interface at the three-phase contact line.(C) 2004 American Institute of Physics.