Journal of the American Chemical Society, Vol.126, No.49, 16142-16147, 2004
Enantioselective hydrogenation of imines in ionic liquid/carbon dioxide media
The enantioselective hydrogenation of N-(1-phenylethylidene)aniline using cationic iridium complexes with chiral phosphinooxazoline ligands was studied as a chemical probe to assess the potential of ionic liquid/carbon dioxide (II/CO2) media for, multiphase catalysis. The biphasic system leads to activation, tuning, and immobilization of the catalyst that would be impossible in classical organic solvent systems or in either of the two unconventional media separately. In particular it is demonstrated that (i) the presence Of CO2 can be beneficial or even mandatory for efficient hydrogenation in the IL; (ii) the precursor is activated in the IL by anion exchange allowing one to use in situ catalysts; (iii) the anion of the IL greatly influences the selectivity of the catalyst; (iv) the products are readily isolated from the catalyst solution by CO2 extraction without cross contamination of IL or catalyst; and (v) the IL leads to enhanced stability of the catalyst. These results are corroborated and rationalized on the basis of the physicochemical properties of the biphasic medium and the chemical characteristics of the catalytic systems.