화학공학소재연구정보센터
Chemical Engineering Communications, Vol.169, 57-78, 1998
Water vapor adsorption-desorption characteristics of a mixed adsorbent
Air conditioning systems that are incorporating desiccant based dehumidifiers are finding increased applications over traditional vapor compression refrigeration systems due to their efficient handling of latent heat loads. Generally, silica gel, molecular sieves, or activated alumina coated on a rotating honeycomb type desiccant matrix is used as a dehumidifier in these systems. However, shapes of the isotherm fnr water Vapor adsorption on these materials are not favorable for optimal performance of desiccant cooling systems. Theoretical studies have shown that a material having a type I isotherm for water vapor, whose shape lies between that on molecular sieve 13X and silica gel would lower installation and operating costs of desiccant based air-conditioning systems. An adsorbent was prepared by mixing a silica gel, molecular sieve 13X, and a hydrophobic molecular sieve. The mixed adsorbent was mixed with a binder and was further coated on both sides of a 0.0014" thick aluminum foil. Both plain and corrugated foils were used in preparing a desiccant matrix. A plain sheet was inserted in between two corrugated sheets and then they were roiled into a cylinder. The shape of water adsorption isotherm and equilibrium water adsorption capacity a err obtained for this desiccant matrix. The shape of the water isotherm in the temperature range of 288-308 K was found to be more favorable than that on silica gel or molecular sieve 13X. However, the total water adsorption capacity of the new mixed adsorbent was significantly lower than these materials. The water adsorption data on the mixed adsorbent could be correlated according to Polyani's potential theory.