화학공학소재연구정보센터
Journal of Vacuum Science & Technology A, Vol.22, No.6, 2284-2289, 2004
Micro-Auger electron spectroscopy studies of chemical and electronic effects at GaN-sapphire interfaces
We have used cross-sectional micro-Auger electron spectroscopy (AES), coupled with micro-cathodoluminescence (CLS) spectroscopy, in a UHV scanning electron microscope to probe the chemical and related electronic features of hydride vapor phase epitaxy GaN/sapphire interfaces on a nanometer scale. AES images reveal dramatic evidence for micron-scale diffusion of 0 from Al2O3 into GaN. Conversely, plateau concentrations of N can extend microns into the sapphire, corresponding spatially to a 3.8 eV defect emission and Auger chemical shifts attributed to Al-N-O complexes. Interface Al Auger signals extending into GaN indicates AlGaN alloy formation, consistent with a blue-shifted CLS local interface emission. The widths of such interface transition regions range from < 100 nm to similar to 1 mum, depending on surface pretreatment and growth conditions. Secondary ion mass spectroscopy depth profiles confirm the elemental character and spatial extent of diffusion revealed by micro-AES, showing that cross-sectional AES is a useful approach to probe interdiffusion and electronic properties at buried interfaces. (C) 2004 American Vacuum Society.