Langmuir, Vol.20, No.22, 9720-9728, 2004
Structure of spin-coated lipid films and domain formation in supported membranes formed by hydration
An atomic force and fluorescence microscopy investigation of the structure of spin-coated lipid films is presented. In the surface of the dry film, lipids are found to orient in a conformation where acyl chains are pointing outward while laterally the individual layers of the multilamellar film exhibit a dewetting pattern similar to what is found in polymer thin films. Hydration of the film in liquid water promotes detachment of bilayers from the surface while a single membrane remains on the mica substrate. This supported membrane is highly uniform and defect-free as compared to supported membranes prepared by conventional methods. It is further demonstrated that supported membranes of binary lipid mixtures prepared by this method exhibit gel-fluid domain coexistence in accordance with expectations from the phase diagrams.