Chemical Engineering Communications, Vol.169, 145-166, 1998
Applications of a non-permselective, catalytically active membrane. A model study
A theoretical investigation has been presented for applications and features of a nonpermselective, catalytic membrane reactor with separated feed of reactors [12-14, 17, 18]. Transmembrane fluxes were calculated from the dusty gas model as a function of a great number of parameters and operation conditions. This study shows that the non-permselective, catalytic membrane reactor with separated feed of reactants (CMRSR) has attractive features to use this reactor in fast and highly exothermic reactions and selectivity improvement in multiple reactions. When the CMRSR is operated in the transport controlled regime, the process is easy to control and even possesses some self-controllability. Due to the transport conversion, thermal runaway cannot occur which allows operation with concentrated feed of reactants. Furthermore, a transmembrane pressure difference increases both the fluxes and the selectivity, because the reaction products are preferentially directed towards one side of the membrane. The simultaneous increase of both selectivity and fluxes is a remarkable feature of a CMRSR which is in contrast with conventional reactors.