Langmuir, Vol.20, No.26, 11366-11373, 2004
Aqueous phase behavior of a 1-O-phytanyl-beta-D-xyloside/water system. Glycolipid-based bicontinuous cubic phases of crystallographic space groups Pn3m and Ia3d
Temperature- and concentration-dependent aqueous phase diagram of a novel alkylglycoside, 1-O-phytanyl-beta-D-xyloside (beta-Xyl(Phyt)), was studied using small-angle X-ray scattering, polarizing optical microscopy, and differential scanning calorimetry. The phases found in this system include an L-c phase, an L-alpha phase, an H-II phase, two inverted cubic phases of crystallographic space groups Pn3m and Ia3d, and a fluid isotropic phase, FI. The phase diagram of the beta-Xyl(Phyt)/water system is similar to that for the 1-monooleylglycerol (MO)/water system, suggesting that the phase behavior is largely determined by the overall molecular shape rather than the details of surfactant molecular structure. Moreover, the structural parameters of the beta-Xyl(Phyt) liquid crystals are also similar to those of the MO/water, due primarily to the similar molecular dimensions of two molecules. As compared to the MO/water system, however, the beta-Xyl(Phyt)/water system displays a lower value of T-K (similar to8.(5) degreesC) and a wider temperature window for the mesophases (8.(5)-120 degreesC). Moreover, beta-Xyl(Phyt) is chemically more robust than MO, as the ether linkage is more stable against hydrolysis than the ester linkage and the phytanyl chain is fully saturated.