화학공학소재연구정보센터
Automatica, Vol.41, No.1, 97-106, 2005
Robust constrained predictive control using comparison model
This paper proposes a quadratic programming (QP) approach to robust model predictive control (MPC) for constrained linear systems having both model uncertainties and bounded disturbances. To this end, we construct an additional comparison model for worst-case analysis based on a robust control Lyapunov function (RCLF) for the unconstrained system (not necessarily an RCLF in the presence of constraints). This comparison model enables us to transform the given robust MPC problem into a nominal one without uncertain terms. Based on a terminal constraint obtained from the comparison model, we derive a condition for initial states under which the ultimate boundedness of the closed loop is guaranteed without violating state and control constraints. Since this terminal condition is described by linear constraints, the control optimization can be reduced to a QP problem. (C) 2004 Elsevier Ltd. All rights reserved.