화학공학소재연구정보센터
Chemical Engineering Science, Vol.59, No.24, 6015-6020, 2004
Thermodynamic analysis for a solid oxide fuel cell with direct internal reforming fueled by ethanol
In the present study, a detailed thermodynamic analysis is carried out to provide useful information for the operation of solid oxide fuel cells (SOFC) with direct internal reforming (DIR) fueled by ethanol. Equilibrium calculations are performed to find the ranges of inlet steam/ethanol (H2O/EtOH) ratio where carbon formation is thermodynamically unfavorable in the temperature range of 500-1500 K. Two types of fuel cell electrolytes, i.e., oxygen-conducting, and hydrogen-conducting electrolytes, are considered. The key parameters determining the boundary of carbon formation are temperature, type of solid electrolyte and extent of the electrochemical reaction of hydrogen. The minimum H2O/EtOH ratio for which the carbon fort-nation is thermodynamically unfavored decreases with increasing temperature. The hydrogen-conducting electrolyte is found to be impractical for use, due to the tendency for carbon formation. With a higher extent of the electrochemical reaction of hydrogen, a higher value of the H2O/EtOH ratio is required for the hydrogen-conducting electrolyte, whereas a smaller value is required for the oxygen-conducting electrolyte. This difference is due mainly to the water formed by the electrochemical reaction at the electrodes. (C) 2004 Elsevier Ltd. All rights reserved.