화학공학소재연구정보센터
Energy, Vol.30, No.2-4, 111-117, 2005
Energy analysis on combustion and energy conversion processes
When we consider exergy analysis on combustion and thermodynamic processes. we introduce another concept against energy analysis,. which is supported by an evaluation of its temperature level. When a higher temperature energy than that an ambient level is taken into consideration. it can be put for Sonic domestic or industrial purpose. A medium temperature energy of 30-60 degreesC is used for domestic heating. and a high temperature of 200 degreesC and above is suitable for power generation or process heating. Therefore, we study exergy concept supported by temperature level. When we discuss power generation, a high temperature energy of 1500 degreesC and above in combined cycle has a higher conversion efficiency than that of 500-600 degreesC in steam cycle. If we try to apply high temperature air combustion. a preheated air temperature of 1000 degreesC and above can be produced by exhaust heat recovery from stack gas. which has been developed as a new technology of energy conservation. In this study the authors present an exergy analysis on combustion and energy conversion processes, which is based on the above-mentioned concept of exergy and energy supported by temperature level. When we discuss high temperature air combustion in furnace, this process shows a higher performance than that of the ambient air combustion. Furthermore. when we discuss the power generation and heat pump processes, the minimum ambient temperature would already be known for each season, and the conversion performance can be estimated by the maximum operating temperature in their cycles. So. the authors attempt to calculate the exergy, and energy values for combustion. power generation and heat pump processes. (C) 2004 Published by Elsevier Ltd.