Chemical Engineering Communications, Vol.126, 189-203, 1993
Phase Distribution and Mixing in a Jet Bubble-Column
This paper describes the results of an experimental study to evaluate phase holdups and RTD for a jet bubble column. The experimental data were obtained in a 61 cm diameter jet bubble column with a conical inlet. Air and water were used as a two-phase system. The ranges of gas and liquid velocities examined were 0 to 9 cm/sec and 0 to 0.6 cm/sec respectively, both based on the cylinder diameter. The experimental data indicate that in the conical section of the column, the gas holdup first decreases with an increase in distance away from the cone inlet, achieves a minimum and then increases until it reaches a somewhat constant value within the cylinder. Gas holdup varies radially with the maximum at the center and the minimum near the wall. Radially-averaged gas holdup increased with gas velocity and remained essentially unchanged with liquid velocity. The RTD measurements were correlated by a two-dimensional dispersion model. The axial dispersion coefficient increased linearly from the cone inlet to the cylinder. It also increased with the gas velocity. The radial dispersion coefficients were considerably smaller than the axial dispersion coefficients.
Keywords:REACTORS