화학공학소재연구정보센터
Langmuir, Vol.21, No.3, 1091-1095, 2005
Surface fabrication of hollow microspheres from N-methylated chitosan cross-linked with gultaraldehyde
We have successfully prepared biocompatible and biodegradable hollow microspheres with sizes between 2 and 5 mum using cyclohexane droplets as a template and the N-methylated chitosan (NMC) cross-linked with gultaraldehyde (GA) as the shell. The structure, morphology, and formation process of the hollow microspheres were characterized by FT-IR, H-1 and C-13 NMR, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results revealed that the microspheres exhibited a very smooth and hollow structure. This work confirmed that the hollow microspheres were accomplished by fabricating on the basis of chemical cross-linking on the surface of the emulsion droplets and by removing cyclohexane as core. The results from SEM and TEM indicated that the emulsion droplets covered with cross-linked NMC in the oil-in-water system aggregated together to form a precipitate of microspheres by coagulating with acetone. Moreover, the cross-linked NMC on the surface of the microspheres continuously cured to form the tight shell, whereas the inner area became a cavity with increase of the aging time, leading to the hollow microspheres. In addition, an anti-infective drug, ofloxacin (Floxin), encapsulated in the microspheres more rapidly released to reach 90 wt % at pH 7.4 within 8 h than at pH 1.2.