화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.109, No.8, 1521-1529, 2005
Self-assembled aggregates of the carotenoid zeaxanthin: time-resolved study of excited states
In this study, we present a way of controlling the formation of the two types of zeaxanthin aggregates in hydrated ethanol: J-zeaxanthin (head-to-tail aggregate, characteristic absorption band at 530 nm) and H-zeaxanthin (card-pack aggregate, characteristic absorption band at 400 run). To control whether J- or H-zeaxanthin is formed, three parameters are important: (1) pH, that is, the ability to form a hydrogen bond; (2) the initial concentration of zeaxanthin, that is, the distance between zeaxanthin molecules; and (3) the ratio of ethanol/water. To create H-aggregates, the ability to form hydrogen bonds is crucial, while J-aggregates are preferentially formed when hydrogen-bond formation is prevented. Further, the formation of J-aggregates requires a high initial zeaxanthin concentration and a high ethanol/water ratio, while H-aggregates are formed under the opposite conditions. Time-resolved experiments revealed that excitation of the 530-nm band of J-zeaxanthin produces a different relaxation pattern than excitation at 485 and 400 run, showing that the 530-nm band is not a vibrational band of the S-2 state but a separate excited state formed by J-type aggregation. The excited-state dynamics of zeaxanthin aggregates are affected by annihilation that occurs in both J- and H-aggregates. In H-aggregates, the dominant annihilation component is on the subpicosecond time scale, while the main annihilation component for the J-a-gregate is 5 ps. The S-1 lifetimes of aggregates are longer than in solution, yielding 20 and 30 ps for H-and J-zeaxanthin, respectively. In addition, H-type aggregation promotes a new relaxation channel that forms the zeaxanthin triplet state.