화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.109, No.6, 2371-2376, 2005
Surface properties of Ni-Pt/SiO2 catalysts for N2O decomposition and reduction by H-2
The surface properties of bimetallic Ni-Pt/SiO2 catalysts with variable Ni/Ni + Pt atomic ratio (0.75, 0.50, and 0.25) were studied using N2O decomposition and NO reduction by hydrogen reactions as probes. Catalysts were prepared by incipient wetness impregnation of the silica support with aqueous solutions of the metal precursors to a total metal loading of 2 wt %. For both model reactions, Pt/SiO2 catalyst was substantially more active than Ni/SiO2 catalyst. Mean particle size by TEM was about the same (in the range 6-8 nm) for all catalysts and truly bimetallic particles (more than 95%) were evidenced by EDS in the Ni-Pt/SiO2 catalysts. CO adsorption on the bimetallic catalysts showed differences in the linear CO absorption band as a function of the Ni/Pt atomic ratio. Bimetallic Ni-Pt/SiO2 catalysts showed, for the N2O decomposition, a catalytic behavior that points out an ensemble-size sensitive behavior for Ni-rich compositions. For the N2O + H-2 reaction, the bimetallic catalysts were very active at low temperature. The following activity order at 300 K was observed: Ni75Pt25 > Ni25Pt75 approximate to Ni50Pt50 > Pt. TOF values for these catalysts increased 2-5 times compared to the most active reference catalyst (Pt/SiO2). The enhancement of the activity in the Ni75Pt25 bimetallic catalysts is explained in terms of the presence of mixed Ni-Pt ensembles.