화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.109, No.8, 3085-3088, 2005
Synthesis and electrochemical properties of vanadium pentoxide nanotube arrays
Nanotube arrays of amorphous vanadium pentoxide (V2O5) were synthesized via template-based electrodeposition, and its electrochemical properties were investigated for Li-ion intercalation applications. The nanotubes have a length of 10 mum, outer diameter of 200 nm and inner diameter of 100 nm. Electrochemical analyses demonstrate that the V2O5 nanotube array delivers a high initial capacity of 300 mAh/g, about twice that of the electrochemically prepared V2O5 film. Although the V2O5 nanotube array shows a more drastic degradation than the film under electrochemical redox cycles, the nanotube array reaches a stabilized capacity of 160 mAh/g, which remains about 1.3 times the stabilized capacity of the film.