화학공학소재연구정보센터
Langmuir, Vol.21, No.4, 1244-1254, 2005
Direct measurement of single and ensemble average particle-surface potential energy profiles
This work involves the development of a novel technique that integrates total internal reflection and video microscopy methods to simultaneously measure single particle and ensemble average particle-surface interactions. For the 2 mum silica colloids and glass coverslip used in this study, particle size polydispersity is found to be a dominant factor in determining the distribution of single particle profiles about ensemble average profiles. In conjunction with this observation, chemical and physical nonuniformity are not evident in any of our measurements even with sensitivity to interactions on the order of kT. One advantage of using ensemble averaging in conjunction with time averaging is the ability to dramatically decrease the time required to measure average particle-wall interactions which scales inversely with interfacial particle concentration. A number of experimental issues are addressed in the development of this technique including (1) combining single particle distribution functions, (2) statistical sampling of distribution functions using both time and ensemble averaging, and (3) correcting overlapping scattering signals between adjacent particles. The capabilities of the ensemble averaging technique are also demonstrated to provide unique measurements of particle-surface interactions in metastable systems by selecting only height excursions of levitated particles when calculating potentials. Ultimately, this new technique provides several important advantages over single particle measurements, which provides a foundation for measuring interactions in increasingly complex interfacial systems.