Journal of Applied Polymer Science, Vol.96, No.4, 1095-1101, 2005
Surface modification of silicone rubber by ion beam assisted deposition (IBAD) for improved biocompatibility
We studied the preparation of antimicrobial silicone rubbers of improved interfacial strength, which could be formed with the ion beam assisted deposition (IBAD) technique for coating metallic or inorganic materials (silver (Ag), Copper (Cu), and Hydroxyapatite(HAp)/TiO2) on the silicone surface. Those coating materials provide high product safety as well as outstanding antimicrobial activity. The deposition methodology is composed of pre-etching with oxygen gas, vaporizing the coating materials, and post-treatment with Ar ion. With the evaporation of the coating materials, the Ar beam was focused on the substrate to assist deposition. It was found out that the ion assisting depositions in the IBAD process give a prominent enhancement in adhesion between silicone rubbers and coatings of Ag and Cu. The HAp/TiO2 coating layer was easily dissolved in aqueous saline solution. All deposited layers display high antimicrobial activities against Staphlococcus aureus (ATCC 6538) and Escherichia coil (ATCC 25,922), showing 99.9% reduction of bacteria, respectively. In a cytotoxicity test, the Ag and HAp/TiO2 coated silicone shows a decrease of cytotoxicity, while the Cu coating leads to a slight increase of cytotoxicity. The result on the surface modifications of silicone rubber will be employed in further study for applications of medical or rehabilitation devices. (c) 2005 Wiley Periodicals, Inc.
Keywords:silicone rubber;ion beam assisted deposition (IBAD);biocompatibility;surface coating;antimicrobial activity