Journal of Applied Polymer Science, Vol.96, No.4, 1193-1199, 2005
Crosslinking of low-density polyethylene by diisocyanates for superior barrier properties
The chemical modification of low-density polyethylene (LDPE) resins with hexamethylene diisocyanate and toluene diisocyanate was achieved. The reaction of LDPE with diisocyanate was monitored by Fourier transform infrared spectroscopy, wherein the appearance of new peaks at 3326, 1620, and 1572 cm(-1) corresponding to -N-H stretching, -(C=O)-NH2 stretching, and -N-H bending in an amide moiety, respectively, was observed. Modified films of excellent clarity and uniform thickness were obtained by the solution casting of crosslinked polyethylene. The oxygen transmission rate (OTR), water vapor transmission rate (WVTR), grease resistance, and thermal properties of the modified films were studied. The results clearly indicate that the OTR was improved by 35% and that grease resistance was improved by 90-125% in the crosslinked LDPE films with little change in their strengths. The heat seal characteristics, however, showed that relatively higher temperatures were needed to achieve efficient sealing in these films. Differential scanning calorimetry showed a decrease in the melting temperature from 104 degrees C for LDPE to 101 degrees C for both of the crosslinked LDPE films. (c) 2005 Wiley Periodicals, Inc.