Journal of Physical Chemistry B, Vol.109, No.10, 4514-4519, 2005
Structures formed by the chiral assembly of racemic mixtures of enantiomers: Iodination products of elaidic and oleic acids
The self-assembled monolayer structure of the products of elaidic acid iodination (the racemic mixture of 9,10-(9S, 10R)-diiodooctadecanoic acid and 9,10-(9R, 10S)-diiodooctadecanoic acid) and the products of oleic acid iodination (the racemic mixture of 9,10-(9R,10R)-diiodooctadecanoic acid and 9,10-(9S,10S)-diiodooctadecanoic acid) are studied by high-resolution scanning tunneling microscopy. For the iodination products of elaidic acid, the separation of enantiomers into distinct chiral domains during the formation of the 2-D crystal on the highly ordered pyrolytic graphite (HOPG) surface is not observed. Instead, within the diiodooctadecanoic acid SAM, each row of molecules is composed of opposite racemates. The two opposite racemates pack alternately inside a row, using different faces to adsorb on the surface. The unit cell is composed of a pair of opposite racemates, forming a heterochiral structure. For the iodination products of oleic acid, the racemic mixture is observed to exhibit quasi-phase separation during the formation of the 2-D crystal on the HOPG surface. Each row is composed of homochiral acid molecules, either the 9,10-(9R,10R)-diiodooctadecanoic acid (R) or the 9,10-(9S, 10S)-diiodooctadecanoic acid (S). The R row and the S row pack alternately, with a unit cell composed of four molecules. Two of the molecules in the unit cell are the 9,10-(9R,10R)diiodooctadecanoic acid (R) molecules; two are the 9,10-(9S,10S)-diiodooctadecanoic acid (S) molecules. In the unit cell, the two molecules that have the same chirality pack antiparallel inside the homochiral row, using different faces to adsorb on the surface. These results suggest that several different types of chiral assembly are possible. Enantiomers with opposite chirality exhibit many chiral assembly patterns, forming heterochiral structures on the surface in addition to separation to form macroscopic chiral domains. By using different conformations, similar enantiomers with opposite chirality will display many chiral assembly patterns to form heterochiral structures on the surface.