화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.109, No.11, 4969-4976, 2005
Hafnium oxide and zirconium oxide atomic layer deposition: Initial precursor and potential side-reaction product pathways with H/Si(100)-2 x 1
Hybrid density functional calculations have been carried out using cluster models of the H/Si(100)-2 x 1 surface to investigate the mechanistic details of the initial surface reactions occurring in the atomic layer deposition of hafnium and zirconium oxides (HfO2 and ZrO2). Reaction pathways involving the metal precursors ZrCl4, Zr(CH3)(4), HfCl4, and Hf(CH3)(4) have been examined. Pathways leading to the formation of a Zr-Si or Hf-Si linkage show a significant sensitivity to the identity of the leaving group, with chloride loss reactions being both kinetically and thermodynamically less favorable than reactions leading to the loss of a methyl group. The energetics of the Zr(CH3)(4) and Hf(CH3)(4) reactions are similar with an overall exothermicity of 0.3-0.4 eV and a classical barrier height of 1.1-1.2 eV. For the reaction between H2O and the H/Si(100)-2 x I surface, the activation energy and overall reaction enthalpy are 1.6 and -0.8 eV, respectively. Due to contamination, trace amounts of H2O may be encountered by metal precursors, leading to the formation of minor species that can lead to unanticipated side-reaction pathways. Such gas-phase reactions between the halogenated and alkylated metal precursors and H2O are exothermic with small or no reaction barriers, allowing for the possibility of metal precursor hydroxylation before the H/Si surface is encountered. Of the contaminant surface reaction pathways, the most kinetically favorable corresponds to the surface -OH deposition. Interestingly, for the hydroxylated metal precursors, a unique reaction pathway resulting in the direct formation of Si-O-Zr and Si-O-Hf linkages has been identified and found to be the most thermodynamically stable pathway available, being exothermic by similar to 1.0 eV.