화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.109, No.11, 5073-5078, 2005
Redox activity and diffusion of hydrophilic, hydrophobic, and amphiphilic redox active molecules in a bicontinuous cubic phase
The objective was to examine how a bicontinuous cubic phase influences the diffusion and electrochemical activity of dissolved molecules. The cubic phase is a structure with three-dimensional continuous channels of water separated by an apolar membrane. A redox active molecule can dissolve in three different environments. A hydrophobic molecule will prefer the interior of the membrane, a hydrophilic molecule will prefer the water channels, and an amphiphilic molecule will be situated with its headgroup at the surface of the membrane and its tail in the interior. The electrochemical activity was measured with cyclic voltammetry and the transport behavior with chronocoulometry. All the molecules were redox active in the cubic phase; that is, all the molecules could reach the surface of the electrode and react. The cubic phase made the kinetics of the charge transfer slower, showing a quasi-reversible behavior. The reason may be that a layer of the membrane adheres to the hydrophobic electrode surface. The diffusion experiment showed that the diffusion was slower than in solution. The molecules that were restricted to diffuse within the membrane gave particularly low mass transport rates.