Journal of Physical Chemistry B, Vol.109, No.12, 5873-5883, 2005
Generic van der waals equation of state, modified free volume theory of diffusion, and viscosity of simple liquids
The shear viscosity formula derived by the density fluctuation theory in previous papers is Computed for argon, krypton, and methane by using the self-diffusion coefficients derived in the modified free volume theory with the help of the generic van der Waals equation of state. In the temperature regime near or above the critical temperature, the density dependence of the shear viscosity can be accounted for by ab initio calculations with the self-diffusion coefficients provided by the modified free volume theory if the minimurn (critical) free volume is set equal to the molecular volume and the volume overlap parameter (a) is taken about unity in the expression for the self-diffusion coefficient. In the subcritical temperature regime, if the density fluctuation range parameter is chosen appropriately at a temperature, then the resulting expression for the shear viscosity can well account for its density and temperature dependence over the ranges of density and temperature experimentally studied. In the sense that once the density fluctuation range is fixed at a temperature, the theory can account for the experimental data at other subcritical temperatures on the basis of the intermolecular force only; the theory is predictive even in the subcritical regime of temperature. Theory is successfully tested in comparison with experimental data for self-diffusion coefficients and shear viscosity for argon, krypton, and methane.