화학공학소재연구정보센터
Langmuir, Vol.21, No.7, 2895-2901, 2005
Slow adsorption reaction between arsenic species and goethite (alpha-FeOOH): Diffusion or heterogeneous surface reaction control
The slow stage of phosphate or arsenate adsorption on hydrous metal oxides frequently follows an Elovich equation. The equation can be derived by assuming kinetic control by either a diffusion process (either interparticle or intraparticle) or a heterogeneous surface reaction. The aim of this study is to determine whether the slow stage of arsenic adsorption on goethite is more consistent with diffusion or heterogeneous surface reaction control. Adsorption kinetics of arsenate and dimethylarsinate (DMA) on goethite (alpha-FeOOH) were investigated at different pH values and inert electrolyte concentrations. Their adsorption kinetics was described and compared using Elovich (Gamma vs ln time) plots. Desorption of arsenate and DMA was studied by increasing the pH of the suspension from pH 4.0 to pH 10.0 or 12.0. The effective particle sizes and xi-potential of goethite were also determined. Effective particle size increased rapidly as the pH approached pH(IEP), both in the absence and presence of arsenic. Inert electrolyte concentrations and pH had no effect on the slow stage of arsenate adsorption on goethite, while the kinetics of DMA adsorption on goethite was influenced by both parameters. The slow stage of arsenate adsorption on goethite follows an Elovich equation. Since effective particle size changes with both pH and inert electrolyte concentrations, and effective particle size influences interparticle diffusion, the arsenate adsorption kinetics indicate that the slow adsorption step is not due to interparticle diffusion. DAM also has complex adsorption kinetics with a slow adsorption stage. DAM desorbed completely and rapidly when the pH was raised, in contrast to the slow adsorption kinetics, indicating that the slow adsorption step is not due to intraparticle diffusion. The slow adsorption is not the result of diffusion, but rather is due either to the heterogeneity of the surface site bonding energy or to other reactions controlling arsenic removal from solution.