- Previous Article
- Next Article
- Table of Contents
Korean Journal of Chemical Engineering, Vol.22, No.3, 489-493, May, 2005
This article has been retracted. See the following:
Retraction: "Growth and formation mechanism of sea-urchin like ZnO nanostructures on Si" [Korean J. Chem. Eng., 22(3), 489 (2005)]
Retraction: "Growth and formation mechanism of sea-urchin like ZnO nanostructures on Si" [Korean J. Chem. Eng., 22(3), 489 (2005)]
Growth and Formation Mechanism of Sea Urchin-Like ZnO Nanostructures on Si
E-mail:
Sea urchin-like nanostructures of ZnO consisting of ZnO nanowires with blunt faceted ends were grown on Si (100) substrates by oxidation of metallic Zn at 600 ℃. ZnO nanowires having a diameter of 30-60 nm and length of 2-4 μm were in similar shape with uniform diameter along its entire length with well faceted blunt ends. X-ray diffraction and transmission electron microscope analysis showed that the as-grown nanostructures were highly crystalline with wurtzite hexagonal structure having lattice constants of a=b=3.25 A and c=5.21 A. Room temperature photoluminescence (PL) measurements showed a weak near band-edge emission at 380 nm, but a strong green emission at 500-530 nm. A model for vapor-solid (VS) growth mechanism of ZnO nanowires was presented, in which nucleation of ZnO is crucial for the growth of the nanostructures.
- Banerjee D, Lao JY, Wang DZ, Huang JY, Ren ZF, Steeves D, Kimball B, Sennett M, Appl. Phys. Lett., 83, 2061 (2003)
- Banerjee D, Lao JY, Wang DZ, Huang JY, Steeves D, Kimball B, Ren ZF, Nanotechnology, 15, 404 (2004)
- Gao PX, Ding Y, Wang ZL, Nano Lett., 3, 1315 (2003)
- Huang MH, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P, Science, 292, 1897 (2001)
- Huang MH, Wu YY, Feick H, Tran N, Weber E, Yang PD, Adv. Mater., 13, 113 (2001)
- Huang Y, Duan X, Cui Y, Laubon LJ, Kim KH, Lieber CM, Science, 294, 1313 (2001)
- Kim TY, Lee SH, Mo YH, Nahm KS, Kim JY, Suh EK, Kim M, Korean J. Chem. Eng., 21(3), 733 (2004)
- Kind H, Yan H, Law M, Messer B, Yang P, Adv. Mater., 14, 158 (2002)
- Lao LY, Wen JG, Ren ZF, Nano Lett., 2, 1287 (2002)
- Lee S, Im YH, Hahn YB, Korean J. Chem. Eng., 22(2), 334 (2005)
- Li Y, Meng GW, Zhang LD, Phillipp F, Appl. Phys. Lett., 76, 2011 (2000)
- Lyu SC, Zhang Y, Lee CJ, Chem. Mater., 15, 3249 (2003)
- Park WI, Kim DH, Jung SW, Yi GC, Appl. Phys. Lett., 80, 4232 (2002)
- Park WI, Yi GC, Kim M, Pennycook SJ, Adv. Mater., 15, 526 (2003)
- Pan ZW, Dai ZR, Wang ZL, Science, 291(5510), 1947 (2001)
- Vanheusdan K, Warren WL, Seager CH, Tallent DR, Voigt JA, Gnade BE, J. Appl. Phys., 79, 7983 (1996)
- Vayssieres L, Adv. Mater., 15, 464 (2003)
- Wagner RS, Ellis WC, Appl. Phys. Lett., 4, 89 (1964)
- Wu J, Liu S, Adv. Mater., 14, 526 (2003)
- Yan H, He R, Pham J, Yang P, Adv. Mater., 15, 402 (2003)
- Liu B, Zeng HC, J. Am. Chem. Soc., 125(15), 4430 (2003)
- Yao BD, Chan YF, Wang N, Appl. Phys. Lett., 81, 757 (2001)
- Xing YJ, Xi ZH, Xue ZQ, Zhang XD, Song JH, Wang RM, Xu J, Song Y, Zhang SL, Yu DP, Appl. Phys. Lett., 83, 1689 (2003)