- Previous Article
- Next Article
- Table of Contents
Journal of the Korean Industrial and Engineering Chemistry, Vol.16, No.3, 305-311, June, 2005
초미립 분말의 제조를 위한 열플라즈마 공정
Thermal Plasma Process for Producing Ultra-fine Powders
E-mail:
초록
열플라즈마 공정은 고온, 고활성, 초급냉 등의 탁월한 특징을 갖고 있으며, 다양한 분야에 적용되고 있다. 본 총설에서는 열플라즈마 공정의 특징과 초미립 분말의 제조를 위한 시스템의 구성을 기술한다. 여기에는 금속, 세라믹, 복합 초미립 분말이 포함되며, 공정의 개발을 위하여 요구되는 핵심기술에 대하여 논의한다. 저자 등은 열플라즈마를 이용하여 다양한 형태의 고품질 초미립 분말을 제조하는 공정의 가능성을 제시하고자 하였다.
The thermal plasma process has excellent characteristics such as high temperature, high chemical activity and rapid quench, and has been applied to various fields.. In this review, we briefly describe the characteristics for the process and the system components for producing ultra-fine powders including metal, ceramic, and composites. The key technology for the process will be discussed. We aimed to demonstrate the feasibility of the process for producing high quality ultrafine powders using thermal plasma.
- Siegel RW, Nanostruct. Mater., 3, 1 (1993)
- Ding J, Tsuzuki T, McCormick PG, J. Am. Ceram. Soc., 79, 2956 (1996)
- Miki M, Yamasaki T, Going Y, Mater. Trans. JIM, 33, 839 (1992)
- Mattrazzi P, Basset D, Miani F, LeCaer G, Nanostruct. Mater., 2, 217 (1993)
- Simoneau M, Esperance GL, Trudeau ML, Schulz R, J. Mater. Res., 9, 535 (1994)
- Zabicky J, Zevin L, Simon E, Shneivais Z, Sason U, abramovich L, Ondracek G, Schuller M, Fredle M, Nanostruct. Mater., 3, 77 (1993)
- Wang CC, Ying IY, Chem. Mater., 11, 3113 (1998)
- Lim HS, Lee YH, Son JY, Yu YS, Lee DH, Sung DD, J. Korean Ind. Eng. Chem., 16(2), 187 (2005)
- Hwa WJ, Jun SY, Lee YB, Park HC, Kim KH, Park SS, J. Korean Ind. Eng. Chem., 15(4), 429 (2004)
- Komarnent S, Pidugu R, Li QH, Roy R, J. Mater. Res., 10, 1687 (1995)
- Terwilliger CD, Chamg YM, Nanostruct. Mater., 4, 651 (1994)
-
He B, Tan JJ, Liew KY, Liu H, J. Mol. Catal. A-Chem., 221, 121 (2004)
-
Jiang ZJ, Liu CY, Liu Y, Appl. Surf. Sci., 233, 135 (2004)
- Lee JY, An JH, Kim JH, J. Korean Ind. Eng. Chem., 16(2), 169 (2005)
- Katz JL, Moquel PF, Nanostruct. Mater., 4, 551 (1994)
- Akhtar MK, Vemury S, Pratsinis SE, Nanostruct. Mater., 2, 29 (1993)
- Patil PS, Mater. Chem. Phys., 59, 185 (1999)
- Wang WN, Itoh Y, Lenggoro IW, Okuyana K, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 111, 69 (2004)
- Oh SM, Park DW, Korean J. Chem. Eng., 17(3), 299 (2000)
- MadhuKumar P, Borse P, Rohatgi VK, Bhoraskar SV, Singh P, Sastry M, Mater. Chem. Phys., 36, 354 (1994)
-
Oh SM, Park DW, Thin Solid Films, 316(1-2), 189 (1998)
- Nakamura S, Ichinose N, J. Ceram. Soc. Jpn. Int. Ed., 96, 591 (1988)
-
Oh SM, Gong JG, Park DW, J. Chem. Eng. Jpn., 34(2), 283 (2001)
- Borsella E, Botti S, Giori R, Martelli S, Turtu T, zappa G, Appl. Phys. Lett., 63, 1345 (1993)
- Ying JY, Benmzinger JB, Gletier H, Phys. Rev. Lett., 48, 1830 (1993)
- Cannon WR, Danforth SC, Flint JH, Haggerty JS, Marra RS, J. Am. Ceram. Soc., 65, 324 (1982)
- Eastman JA, Thompson LJ, Marshall DJ, Nanostruct. Mater., 2, 304 (1993)
- Reed TB, J. Appl. Phys., 32, 821 (1961)
- Oh SM, Park DW, HWAHAK KONGHAK, 35(2), 249 (1997)
-
Oh SM, Kim SS, Lee JE, Ishigaki T, Park DW, Thin Solid Films, 435(1-2), 252 (2003)
-
Oh SM, Park DW, Thin Solid Films, 316(1-2), 189 (1998)
-
Oh SM, Ishigaki T, Thin Solid Films, 457(1), 186 (2004)
- Oh SM, Li JG, Ishigaki T, J. Mater. Res., 20, 529 (2005)