Journal of the Korean Industrial and Engineering Chemistry, Vol.16, No.3, 427-433, June, 2005
마이크로파를 이용한 인삼으로부터 유효성분의 추출
Microwave-Assisted Extraction of Effective Constituents from Ginseng
E-mail:
초록
마이크로파를 이용한 인삼으로부터 가용성 성분을 추출할 때의 용매(에탄올-물) 사용량, 고체 입자크기, 마이크로파 전력의 영향과 용매-인삼 혼합물의 마이크로파 가열 특성 및 팽윤도에 대하여 검토하였다. 용매와 인삼의 비는 6 : 1(vol. of solvent to mass of ginseng)이 적당하였고 인삼 입자는 작을수록 추출률이 높았으나 슬러리를 여과하여 여분의 용매를 분리하기가 매우 곤란하였다. 마이크로파 전력은 세기가 클수록 추출 속도는 빨라지나 추출률은 투입되는 전체 에너지양에 영향 받는 것을 확인할 수 있었다. 마이크로파와 물중탕으로 가열한 인삼의 수분 흡수량으로부터 구한 질량기준 팽윤도는 마이크로파로 가열하였을 때 더 빠르게 일어났으며 이러한 결과가 마이크로파를 이용한 추출이 종래의 추출방법에 비하여 추출률이 높고 속도가 빨라지게 되는 요인일 것으로 판단되었다.
The use of the microwave-assisted process for the extraction of effective constituents from ginseng was investigated at various operating conditions. The influence of solvent (ethanol-water, 50% v/v) to ginseng ratio, particle size and applied microwave power on the efficiency of extraction was examined. The microwave extraction system used was custom manufactured so that the intensity of microwave may be varied by using anode-voltage controller. It was found that the ratio of 6 : 1 (vol/mass) gave a good extraction efficiency. Small particle size gave high yield but it caused difficulties in the separation of solvent from the sludge. The higher power was no guarantee of the efficient extraction yield. The more important factor than the employed power was the adequate temperature under sufficient contact time. Using deionized-water as swelling agent, the degree of swelling of ginseng by microwave heating and conventional heating in water-bath was also studied. It was observed that the microwave heating enhanced the swelling much more than the conventional heating. It is believed that this enhanced swelling was esponsible for the rapid microwave-assisted extraction rate.
- KMHW, Korean Food Standard Code, Korean Ministry of Health and Welfare, p. 507, Seoul (1997)
- Pan XJ, Niu GG, Liu HZ, Chem. Eng. Process., 42(2), 129 (2003)
- Diagne RG, Foster GD, Khan SU, J. Agric. Food Chem., 50, 3204 (2002)
- Meredith R, Engineers' Handbook of Industrial Microwave Heating, The Institution of Electrical Engineers, London, U. K. (1998)
- Kingston HM, Haswell SJ, (Eds), Microwave-Enhanced Chemistry, Fundamentals, Sample Preparation and Applications, American Chemical Society, Washington D. C. (1997)
- Pare JR, Belanger JMR, Punt MM, U. S. Patent 6,061,926 (2000)
- Mompon B, Surbled M, Lemaire B, Anizon J, [15b], New Extraction Technology 21st Century, AIChE Spring Meeting (2000)
- Kwon JH, Belanger JMR, Pare JRJ, J. Agric. Food Chem., 51, 1807 (2003)
- Shu YY, Ko MY, Chang YS, Microchem J., 74, 131 (2003)
- Vongsangnak W, Gua J, Chauvatcharin S, Zhong J, Biochem. Eng. J., 18, 115 (2004)
- Jonathan B, Biological Performance of Materials Fundamentals of Biocompatibility, 3rd ed., Marcel Dekker (1999)
- Datta AK, Chem. Eng. Prog., 86, 47 (1990)
- Datta AK, Chem. Eng. Prog., 86, 47 (1990)
- Venkatesh MS, Raghavan GSV, Biochemical Engineering, 88, 1 (2004)
- Prosetya H, Datta A, J. Microwave Power and Electromagnetic Energy, 26, 215 (1991)
- AbuGhannam N, McKenna B, J. Food Eng., 32(4), 391 (1997)