Journal of Physical Chemistry B, Vol.109, No.18, 8744-8748, 2005
Microrheology of wormlike micellar fluids from the diffusion of colloidal probes
The microrheology of cationic micellar solutions has been investigated as a function of added organic salts using quasielastic light scattering (QELS). Two organic salts, sodium p-toluene sulfonate and sodium salicylate, were used to induce microstructural changes in cetyl trimethylammonium bromide (CTAB) micelles. The mean-squared displacement (MSD) of polystyrene probe particles embedded in CTAB micellar solutions was monitored by QELS in the single-scattering regime. Through the use of the generalized Stokes-Einstein relationship, the frequency-dependent complex shear moduli of each fluid were estimated from the Laplace transform of the corresponding MSD. The salt-induced transition from nearly spherical to elongated wormlike micelles and consequent changes in fluid response from viscous to viscoelastic are clearly captured by microrheology.