화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.127, No.18, 6672-6678, 2005
Neutron vibrational spectroscopy gives new insights into the structure of poly(p-phenylene terephthalamide)
The vibrational spectra of benzanilide and poly(p-phenylene terephthalamide) have been measured using inelastic neutron scattering. These compounds have similar hydrogen-bond networks, which, for poly(p-phenylene terephthalamide), lead to two-dimensional hydrogen-bonded sheets in the crystal. Experimental spectra are compared with solid-state, quantum chemical calculations based on density functional theory (DFT). Such "parameter-free" calculations allow the structure-dynamics relation in this type of compound to be quantified, which is demonstrated here for benzanilide. In the case of poly(p-phenylene terephthalamide), vibrational spectroscopy and DFT calculations help resolve long-standing questions about the packing of hydrogen-bonded sheets in the solid state.