Langmuir, Vol.21, No.9, 4218-4226, 2005
Molecular simulation study of the effect of pressure on the vapor-liquid interface of the square-well fluid
We examine a model system to study the effect of pressure on the surface tension of a vapor-liquid interface. The system is a two-component mixture of spheres interacting with the square-well (A-A) and hard-sphere (B-B) potentials and with unlike (A-B) interactions ranging (for different cases) from hard sphere to strongly attractive square well. The bulk-phase and interfacial properties are measured by molecular dynamics simulation for coexisting vapor-liquid phases for various mixture compositions, pressures, and temperatures. The variation of the surface tension with pressure compares well to values given by surface-excess formulas derived from thermodynamic considerations. We find that surface tension increases with pressure only for the case of an inert solute (hard-sphere A-B interactions) and that the presence of A-B attractions strongly promotes a decrease of surface tension with pressure. An examination of density and composition profiles is made to explain these effects in terms of surface-adsorption arguments.