- Previous Article
- Next Article
- Table of Contents
Langmuir, Vol.21, No.9, 4240-4248, 2005
Vibration-actuated drop motion on surfaces for batch microfluidic processes
When a liquid drop is subjected to an asymmetric lateral vibration on a nonwettable surface, a net inertial force acting on the drop causes it to move. The direction and velocity of the drop motion are related to the shape, frequency, and amplitude of vibration, as well as the natural harmonies of the drop oscillation. Aqueous drops can be propelled through fluidic networks connecting various unit operations in order to carry out batch processing at the miniature scale. We illustrate the integration of several unit operations on a chip: drop transport, mixing, and thermal cycling, which are precursor steps to carrying out advanced biological processes at microscale, including cell sorting, polymerase chain reaction, and DNA hybridization.