화학공학소재연구정보센터
Langmuir, Vol.21, No.10, 4431-4440, 2005
Argon and nitrogen adsorption in disordered nanoporous carbons: Simulation and experiment
We report experimental measurements of the isosteric heats of adsorption for argon and nitrogen in two microporous saccharose-based carbons, using a Tian-Calvet microcalorimeter. These data are used to test recently developed molecular models of these carbons, obtained by a constrained reverse Monte Carlo method. grand canonical Monte Carlo simulation is used to calculate the adsorption isotherms and isosteric heats for these systems, and the results for the latter are compared to the experimental data. For argon, excellent quantitative agreement is obtained over the entire range of pore filling. In the case of nitrogen, very good agreement is obtained over the range of coverage 0.25 ≤ &UGamma;/&UGamma;(0) s ≤ 0.85, but discrepancies are observed at lower and higher coverages. The discrepancy at low coverage may be due to the presence of oxygenated groups on the pore surfaces, which are not taken into account in the model. The differences at high coverage are believed to arise from the presence of a few mesopores, which again are not included in the model. Pair correlation functions (argon-carbon and argon-argon) are determined from the simulations and are discussed as a function of pore filling. Snapshots of the simulations are presented and provide a picture of the pore filling process.