화학공학소재연구정보센터
Polymer, Vol.46, No.11, 3661-3668, 2005
Synthesis of carboxylic acid functionalized nanoparticles by reversible addition-fragmentation chain transfer (RAFT) miniemulsion polymerization of styrene
In this study, an addition-fragmentation chain transfer agent bearing carboxylic acid, 4-toluic acid dithiobenzoate (TADB), was used to synthesize carboxylic acid functionalized PS nanospheres via the miniemulsion polymerization. In addition, non-functionalized RAFT agent, benzyl dithiobenzoate (BDB), was also used to compare the surface properties of the PS nanoparticles. For the TADB system, the rate of polymerization was approximately two-fold faster than the BDB system, while the molecular weights and PDI of PS remain intact. With increasing the molar ratio of [TADB]/[AIBN] from 0 to 3.0, the average particle diameter is substantially increased from 90 to 126 nm. The absolute value of zeta potential and conductivity also correspondingly increase from 49.1 mV and 3.47 mS/cm to 53.9 mV and 4.21 mS/cm, respectively. The results indicate that the surface of PS nanospheres could be functionalized by means of a carboxylic acid group on the RAFT agent and the stability of the PS miniemulsion latex could be significantly improved. © 2005 Elsevier Ltd. All rights reserved.