화학공학소재연구정보센터
Journal of Bioscience and Bioengineering, Vol.99, No.3, 264-271, 2005
Production of recombinant human antithrombin by Pichia pastoris
This paper deals with the production of recombinant human antithrombin (rAT) by the methylotrophic yeast Pichia pastoris. In preliminary methanol-limited fed-batch fermentation, the rAT concentration reached 324 mg/l at 192 It of cultivation, but the specific heparin cofactor (HC) activity of rAT in the culture supernatant was 10% of that of plasma-derived antithrombin (pAT). To improve the specific HC activity of rAT, effort was first focused on the optimization of culture pH and media composition, resulting in protection of rAT against pH-dependent instability and proteolytic degradation. However, even in the optimized methanol-limited fed-batch fermentation, the specific HC activity of rAT in the culture supernatant was still 20% that of pAT. To investigate the unknown mechanisms involved in the decreased specific HC activity of rAT, the culture supernatant of mock-transfected cells was prepared by methanol-limited fed-batch fermentation. When pAT was added to this supernatant, a rapid decrease in HC activity was observed; the residual HC activity was 26% after 24 h of incubation at 25° C. The loss of pAT activity was prevented by addition of a formaldehyde scavenger, aminourea, to the supernatant. In addition, alcohol oxidase activity was observed in the supernatant, resulting in the accumulation of formaldehyde in the culture broth. These results suggest that the formaldehyde produced by methanol oxidation in the culture broth of P pastoris might decrease the HC activity of rAT during fermentation. Replacing the methanol with glycerol as the carbon source improved the specific HC activity of rAT from 20% to above 40% of that of pAT. In the glycerol-limited fed-batch fermentation, rAT is expressed at 100 mg/l under the control of the truncated mutated AOX2 promoter.