화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.22, No.4, 541-546, July, 2005
Raney Ni Catalysts Derived from Different Alloy Precursors Part II. CO and CO2 Methanation Activity
E-mail:
Catalytic activity, in conjunction with reaction mechanism, was studied in the methanation of CO and CO2 on three Raney Ni catalysts derived from different Ni-Al alloys using different leaching conditions. Main products were CH4 and CO2 in CO methanation, and CH4 and CO in CO2 methanation. Any other hydrocarbon products were not observed. Over all catalysts, CO methanation showed lower selectivity to methane and higher activation energy than CO2 methanation. The catalyst derived from alloy having higher Ni content using more severe leaching conditions, namely higher reaction temperature and longer extraction time, showed higher specific activity and higher selectivity to methane both in CO and CO2 methanation. In CO and CO2 methanation on Raney Ni catalyst, catalytic activity was seen to have close relation with the activity to dissociate CO.
  1. Aksoylu AE, Misirli Z, Onsan ZI, Appl. Catal. A: Gen., 168(2), 385 (1998) 
  2. Anderson RB, Lee CB, Machiels JC, Can. J. Chem. Eng., 54, 590 (1976)
  3. Araki M, Ponec V, J. Catal., 44, 439 (1976) 
  4. Chang FW, Kuo MS, Tsay MT, Hsieh MC, Appl. Catal. A: Gen., 247(2), 309 (2003) 
  5. Freel J, Pieters WJM, Anderson RB, J. Catal., 14, 247 (1969) 
  6. Freel J, Pieters WJM, Anderson RB, J. Catal., 16, 281 (1970) 
  7. Fujita SI, Takezawa N, Chem. Eng. J., 68(1), 63 (1997) 
  8. Goodman DW, J. Catal., 216(1-2), 213 (2003) 
  9. Grenoble DC, Estadt MM, Ollis DF, J. Catal., 67, 90 (1981) 
  10. Hashimoto K, Habazaki H, Yamasaki M, Meguro S, Sasaki S, Katagiri T, Matsui H, Fujimura T, Izumiya K, Kumagai N, Akiyama E, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 304, 88 (2001)
  11. Hu C, Hu H, Li M, Tian A, J. Mol. Struct., 491, 155 (1999)
  12. Hwang BB, Yeo YK, Na BK, Korean J. Chem. Eng., 20(4), 631 (2003)
  13. Iizuka T, Tanaka Y, Tanabe K, J. Catal., 76, 1 (1982) 
  14. Kim SB, Kim YK, Lim YS, Kim MS, Hahm HS, Korean J. Chem. Eng., 20(6), 1023 (2003)
  15. Lee CB, Anderson RB, Prepr. Can. Symp. Catal., 6, 160 (1979)
  16. Lee SW, Nam SS, Kim SB, Lee KW, Choi CS, Korean J. Chem. Eng., 17(2), 174 (2000)
  17. Mirodatos C, Preliaud P, Promet H, J. Catal., 107, 275 (1987) 
  18. Nakabayashi I, Yoshino T, Abe S, Ind. Eng. Chem. Prod. Res. Dev., 22, 578 (1983) 
  19. Rehmat A, Randhava SS, Ind. Eng. Chem. Prod. Res. Dev., 9, 512 (1970) 
  20. Sane S, Bonnier JM, Damon JP, Masson J, Appl. Catal., 9, 69 (1984) 
  21. Savelov AI, Fasman AB, Russ. J. Phys. Chem., 59, 599 (1985)
  22. Takenaka S, Shimizu T, Otsuka K, Int. J. Hydrog. Energy, 29, 1065 (2004) 
  23. Vannice MA, J. Catal., 44, 152 (1976) 
  24. VanHo S, Harriot P, J. Catal., 64, 272 (1980) 
  25. Wainwright MS, Anderson RB, J. Catal., 64, 124 (1980) 
  26. Weatherbee GD, Bartholomew CH, J. Catal., 68, 67 (1981) 
  27. Weatherbee GD, Bartholomew CH, J. Catal., 77, 460 (1982) 
  28. Yang CH, Soong Y, Biloen P, "Abundancy and Reactivity of Surface Intermediates in Methanation, Determined with Transient Kinetic Methods", Proceedings 8th International Congress Catalysis, Berlin, Vol. II, 3 (1984)
  29. Yesgar PW, Sheintuch M, J. Catal., 127, 576 (1991)