화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.22, No.4, 611-616, July, 2005
Interaction between Reverse Micelles as a Key Factor Governing Back-Extraction of Proteins and Its Control Systems
E-mail:
The interfacial transport processes of proteins from a reverse micellar phase to an aqueous phase have been investigated focusing on micellar-micellar interaction. The proteins solubilized into reverse micelles were backextracted to the aqueous phase depending on the concentration of reverse micelles in organic phase. This fact seems to suggest the importance of micellar-micellar interactions in back-extraction processes. The interactions induced by various alcohol addition and temperature change could be evaluated easily and quantitatively by the percolation phenomena in reverse micellar systems (RVMS). The interactions were influenced considerably by the presence of small amount of alcohol and temperature in the RVMS. The addition of alcohols promotes the back-extraction of proteins depending on their species and concentrations. In particular, the alcohols that suppress the cluster formation of reverse micelles, remarkably improve the back-extraction processes. With a small amount of alcohol (20mM OctOH), Bovine carbonic anhydrase (CAB) can be back-extracted completely from reverse micelles to aqueous solution at the optimal temperature, in which the so high concentration of salt is not necessary.
  1. Alexandridis P, Holzwarth JF, Hatton TA, J. Phys. Chem., 99(20), 8222 (1995) 
  2. Aires-Barros MR, Cabral JMS, Biotechnol. Bioeng., 38, 1302 (1991) 
  3. Carlson A, Nagarajan R, Biotechnol. Prog., 8, 85 (1992) 
  4. Cameiro-da-Cunha MG, Cabral JMS, Aires-Barros MR, Bioprocess Eng., 11, 203 (1994)
  5. Cassin G, Illy S, Pileni MP, Chem. Phys. Lett., 221, 205 (1994) 
  6. Dekker K, Riet KV, Bijsterbosch BH, Wolbert RBG, Hilhorst R, Chem. Eng. Sci., 45, 2949 (1990) 
  7. Dekker M, Riet KV, VanDerPol JJ, Chem. Eng. J., 46, B69 (1991) 
  8. Hatton TA, Surfactant-Based Separation Processes, Scamehorn, J. F. and Harwell, J. H. ed., p. 55-90, Marcel Dekker, New York (1989)
  9. Holovko M, Badiadi JP, Chem. Phys. Lett., 204, 511 (1993) 
  10. Hong DP, Kuboi R, Komasawa I, Korean J. Chem. Eng., 14(5), 334 (1997)
  11. Hong DP, Kuboi R, Biochem. Eng. J., 4, 23 (1999) 
  12. Hong DP, Lee SS, Kuboi R, J. Chromatogr. B, 743, 203 (2000)
  13. Huruguen JP, Authier M, Greffe JL, Pileni MP, Langmuir, 7, 243 (1991) 
  14. Jada A, Lang J, Zana R, J. Phys. Chem., 93, 10 (1989) 
  15. Jada A, Lang J, Zana R, J. Phys. Chem., 94, 387 (1990) 
  16. Jolles P, Methods Enzymol., 5, 12 (1962)
  17. Kuboi R, Hashimoto K, Komasawa I, Kag. Kog. Ronbunshu, 16, 335 (1990)
  18. Kuboi R, Mori Y, Komasawa I, Kag. Kog. Ronbunshu, 16, 763 (1990)
  19. Kuboi R, Mori Y, Komasawa I, Kag. Kog. Ronbunshu, 16, 1060 (1990)
  20. Kuboi R, Yano K, Tanaka H, Komasawa I, J. Chem. Eng. Jpn., 26, 286 (1993) 
  21. Kuboi R, Hong DP, Komasawa I, Shiomori K, Kawano Y, Lee SS, Solvent Extr. Res. Dev. -Jpn., 3, 223 (1996)
  22. Lang J, Lalem N, Zana R, J. Phys. Chem., 95, 9533 (1991) 
  23. Larsson KM, Pileni MP, Eur. Biophys. J., 21, 409 (1993)
  24. Leser ME, Luisi PL, Chimia, 44, 270 (1990)
  25. Luisi PL, Giomini M, Pileni MP, Robinson BH, Biochim. Biophys. Acta., 947, 209 (1988)
  26. Nishiki T, Sato A, Kataoka T, Solv. Ext. in the Process Industries, 2, 840 (1993)
  27. Nishiki T, Muto A, Kataoka T, Kag. Kog. Ronbunshu, 21, 916 (1995)
  28. Nishiki T, Muto A, Kataoka T, Kato D, The Chem. Eng. J., 59, 297 (1995)
  29. Pires MJ, Cabral JMS, Biotechnol. Prog., 9, 647 (1993) 
  30. Shiomori K, Kawano Y, Kuboi R, Komasawa I, J. Chem. Eng. Jpn., 32(2), 177 (1999) 
  31. Sun Y, Ichikawa S, Sugiura S, Furusaki S, Biotechnol. Bioeng., 58(1), 58 (1998) 
  32. Yamada Y, Kuboi R, Komasawa I, Solvent Extr. Res. Dev. -Jpn., 1, 167 (1994)