화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.16, No.5, 628-634, October, 2005
유기물-무기물 용액법을 이용한 지르코니아-알루미나 복합체의 제조 및 특성
Fabrication and Characterization of Zirconia-Alumina Composites by Organic-Inorganic Solution Technique
E-mail:
초록
Zirconia-alumina 고분자 전구체가 유기물-무기물 용액 방법으로 zirconium acetylacetonate (ZA), aluminium nitrate (AN), polyethylene glycol (PEG), 그리고 에탄올을 이용하여 제조되었다. 고분자 전구체의 열적 특성 및 점도를 시차주사열용량분석기(DSC), 열중량분석기(TGA), 그리고 동적유변측정기를 이용하여 측정하였다. 부피 팽창을 동반하는 강렬한 발열반응이 140 ℃에서 일어났다. 고분자 전구체의 부피팽창은 금속물질중에 유기물의 분해반응과 금속양이온과 PEG 사이의 반응에 의한 것이다. 이들 분해반응과 금속양이온과 PEG 사이의 반응에 대한 여부를 적외선분광기(FT-IR)와 13C solid-NMR 결과로부터 확인하였다. 고분자 전구체의 온도가 증가함에 따라 N-O, O-H, 그리고 C=C에서의 피이크 강도가 감소하였다. 이 결과는 강렬한 발열반응시 금속 물질의 분해반응과 PEG와 금속양이온의 반응이 일어났음을 나타내는 것이다. 다공성 파우더는 800 ℃에서 2 h 동안 소결과정을 거쳐 결정성 ZrO2-Al2O3 복합체가 되었다.
Zirconia-alumina polymer precursor was prepared from zirconium acetylacetonate (ZA). paluminium nitrate (AN), polyethylene glycol (PEG), and ethyl alcohol via an organic-inorganic solution technique. The thermal properties and viscosity of the polymer precursor were measured by differential scanning calorimetry (DSC), thermograbimetric analyzer (TGA), and dynamic viscometer. The vigorous exothermic reaction with volume expansion occurred at 140 ℃. The volume expansion was caused by abrupt decomposition of the organic group in metal compounds and the metal ions-PEG reaction. The evidences for these reactions were confirmed by FT-IR and 13C solid NMR results. The peak intensity at N-O, O-H and C=C decreased with increasing temperature. This indicated that the decomposition of metal compounds and the metal ions-PEG reaction occurred during the vigorous exothermic reaction. At 800 ℃ for 2 h, the porous powders transformed to the crystalline ZrO2-Al2O3 composites.
  1. Niihara K, J. Ceram. Soc. Jpn., 99, 974 (1991)
  2. Sternitzke M, J. European Ceram. Soc., 17, 1061 (1997) 
  3. Dusza J, Sajgalik P, J. Am. Ceram. Soc., 82, 3613 (1999)
  4. Buljan ST, Baldoni JG, Huckabee ML, Am. Ceram. Soc. Bull., 66, 347 (1987)
  5. Herrmann M, Schuber C, Rendtel A, Hubner H, J. Am. Ceram. Soc., 81, 1095 (1998)
  6. Heuer AH, J. Am. Ceram. Soc., 70, 689 (1987) 
  7. Laurent C, Rousset A, Bonnefond P, Oquab D, Lavelle B, J. European Ceram. Soc., 16, 937 (1996) 
  8. Faro AC, Souza KR, Lucia V, Camorim DL, Cardoso MB, Phys. Chem. Chem. Phys., 5, 1932 (2003) 
  9. Green DJ, J. Am. Ceram. Soc., 65, 610 (1982) 
  10. Liu JG, Wilkox DL, J. Mater. Res., 10, 84 (1995)
  11. Naskar MK, Chatterjee M, Lakshmi NS, J. Mater. Sci., 37(2), 343 (2002) 
  12. Li C, Chen YW, Yen TM, J. Sol-Gel Sci. Technol., 4, 205 (1995) 
  13. Bhaduri S, Bhaduri SB, Zhou E, J. Mater. Res., 13, 136 (1998)
  14. Balasubramanian M, Malhotra SK, Gokularathnam CV, J. Mater. Sci., 30(13), 3515 (1995) 
  15. Sisson RD, Smyser BM, Nanostruct. Mater., 10, 829 (1998) 
  16. Viswanath RN, Ramasamy S, Nanostruct. Mater., 12, 1085 (1999) 
  17. Chatterjee M, Naskar MK, Ganguli D, J. Sol-Gel Sci. Technol., 28, 217 (2003) 
  18. Lee SJ, Kim YC, Hwang JH, J. Ceram. Process. Res., 5, 223 (2004)
  19. Pechini MP, U. S. Patent, 3,330,697 (1967)
  20. Lee SJ, Biegalski MD, Kriven WM, J. Mater. Res., 14, 3001 (1999)
  21. Lee SJ, Benson EA, Kriven WM, J. Am. Ceram. Soc., 82, 2049 (1999)
  22. Lee SJ, Kim YC, J. Kor. Ceram. Soc., 40, 837 (2003)
  23. Lee SJ, Kriven WM, J. Am. Ceram. Soc., 81, 2605 (1998)
  24. Lu SW, Lee BI, Mann LA, Mater. Lett., 43, 102 (2000) 
  25. Wu XD, Zou L, Yang SR, Wang DP, J. Colloid Interface Sci., 239(2), 369 (2001) 
  26. Tsay JD, Fang TT, Gubiotti TA, Ying JY, J. Mater. Sci., 33(14), 3721 (1998) 
  27. Clark IJ, Takeuchi T, Ohotori N, Sinclair DC, J. Mater. Chem., 9, 83 (1999) 
  28. Duran P, Gutierrez D, Tartaj J, Banares MA, Moure C, J. European Ceram. Soc., 22, 797 (2002) 
  29. Koenig JL, Spectroscopy of Polymers, ACS, 197 (1992)
  30. Chen Z, Chawla KK, Koopman M, Mater. Sci. Eng. R-Rep., 367, 24 (2004)