Macromolecular Research, Vol.13, No.5, 409-417, October, 2005
Surface Properties of Silane-Treated Titania Nanoparticles and Their Rheological Behavior in Silicone Oil
E-mail:
The surface of rutile titania nanoparticles was chemically modified by reacting with alkoxy silane. The surface and rheological properties in silicone oil having a wide range of viscosity were investigated. Total surface free energy ( γs) of the titania particles decreased from 53.12 to 26.94 mJ/m2 as the silane used for surface treatment was increased from 0 to 5.0 wt%. The surface free energy of neat silane was 25.5 mJ/m2, which is quite close to that of titania particles treated with 5.0 wt% silane. Due to the hydrophobic nature of treated-titania, the contact angle was accordingly higher for polar solvent in the order of water>ethylene glycol>formamide> α-bromonaphthalene. In sum of rheological behavior, as the applied shear stress or viscosity of the silicone oil increased, the titania particles tend to form layers and agglomerated clusters, showing shear-thinning and shear-thickening behaviors, sequentially. A good dispersion of discrete titania particles obeying a Newtonian flow behavior was achieved at a surface energy or low concentration of silane-treated titania particles in hydrophobic silicone oil.
- Morris GE, Skinner WA, Self PG, Smart RSC, Colloids Surf. A: Physicochem. Eng. Asp., 155, 27 (1999)
- Tseng WJ, Lin KC, Mat. Sci. Eng., A355, 186 (2003)
-
Yang HG, Li CZ, Gu HC, Fang TN, J. Colloid Interface Sci., 236(1), 96 (2001)
- Lengalova A, Pavlinek V, Saha P, Quadrat O, Stejskal J, Colloids Surf. A: Physicochem. Eng. Asp., 227, 1 (2003)
- Farrokhpay S, Morris GE, Fornasiero D, Daniel SP, Colloids Surf. A: Physicochem. Eng. Asp., 253, 183 (2005)
-
Gesenhues U, Chem. Eng. Technol., 26(1), 25 (2003)
- Leimbach J, Rupprecht H, Colloid Polym. Sci., 271, 307 (1993)
-
Wang J, Gao L, Sun J, Li Q, J. Colloid Interface Sci., 213(2), 552 (1999)
- Strauss H, Heegn H, Strienitz I, Chem. Eng. Sci., 48, 323 (1993)
-
Li JG, Gao L, Guo JK, J. Mater. Sci. Lett., 21(6), 509 (2002)
- Girod G, Lamarche JM, Foissy A, J. Colloid Interface Sci., 121, 265 (1988)
-
BOHMER MR, SOFI YE, FOISSY A, J. Colloid Interface Sci., 164(1), 126 (1994)
- Kilau HW, Pahlman JE, Colloids Surf. A: Physicochem. Eng. Asp., 26, 217 (1987)
- Varadara R, Bock J, Brons N, Zushma S, J. Colloid Interface Sci., 167, 207 (1994)
- van Oss CJ, Chaudhury MK, Good RJ, Adv. Colloid Interface Sci., 28, 35 (1987)
- van Oss CJ, Chaudhury MK, Good RJ, Chem. Rev., 88, 927 (1998)
- van Oss CJ, Colloids Surf. A: Physicochem. Eng. Asp., 78, 1 (1993)
- van Oss CJ, Colloids Surf. B: Biointerfaces, 5, 91 (1995)
- Drago RS, Vogel GC, Needham TE, J. Am. Chem. Soc., 99, 3203 (1977)
-
Chibowski E, Perea-Carpio R, J. Colloid Interface Sci., 240(2), 473 (2001)
- Stokes RJ, Evans DF, Fundamentals of Interfacial Engineering, Wiley, New York (1996)
- Frith WJ, Lips A, Adv. Colloid Interface Sci., 98, 341 (2002)
-
Hoffman RL, J. Rheol., 42(1), 111 (1998)
- Chadwick MD, Goodwin JW, Vincent B, Lawson EJ, Mills PDA, Colloids Surf. A: Physicochem. Eng. Asp., 196, 235 (2002)
- Jung H, Lee K, Shim SE, Yang S, Lee JM, Lee H, Choe S, Macromol. Res., 12(5), 512 (2004)
- Krieger IM, Dougherty TJ, Trans. Soc. Rheol., 3, 137 (1959)
- Barnes HA, Hutton JF, Walters K, An Introduction to Rheology, Elsevier, New York (1989)