화학공학소재연구정보센터
Macromolecular Research, Vol.13, No.5, 409-417, October, 2005
Surface Properties of Silane-Treated Titania Nanoparticles and Their Rheological Behavior in Silicone Oil
E-mail:
The surface of rutile titania nanoparticles was chemically modified by reacting with alkoxy silane. The surface and rheological properties in silicone oil having a wide range of viscosity were investigated. Total surface free energy ( γs) of the titania particles decreased from 53.12 to 26.94 mJ/m2 as the silane used for surface treatment was increased from 0 to 5.0 wt%. The surface free energy of neat silane was 25.5 mJ/m2, which is quite close to that of titania particles treated with 5.0 wt% silane. Due to the hydrophobic nature of treated-titania, the contact angle was accordingly higher for polar solvent in the order of water>ethylene glycol>formamide> α-bromonaphthalene. In sum of rheological behavior, as the applied shear stress or viscosity of the silicone oil increased, the titania particles tend to form layers and agglomerated clusters, showing shear-thinning and shear-thickening behaviors, sequentially. A good dispersion of discrete titania particles obeying a Newtonian flow behavior was achieved at a surface energy or low concentration of silane-treated titania particles in hydrophobic silicone oil.
  1. Morris GE, Skinner WA, Self PG, Smart RSC, Colloids Surf. A: Physicochem. Eng. Asp., 155, 27 (1999) 
  2. Tseng WJ, Lin KC, Mat. Sci. Eng., A355, 186 (2003)
  3. Yang HG, Li CZ, Gu HC, Fang TN, J. Colloid Interface Sci., 236(1), 96 (2001) 
  4. Lengalova A, Pavlinek V, Saha P, Quadrat O, Stejskal J, Colloids Surf. A: Physicochem. Eng. Asp., 227, 1 (2003) 
  5. Farrokhpay S, Morris GE, Fornasiero D, Daniel SP, Colloids Surf. A: Physicochem. Eng. Asp., 253, 183 (2005) 
  6. Gesenhues U, Chem. Eng. Technol., 26(1), 25 (2003) 
  7. Leimbach J, Rupprecht H, Colloid Polym. Sci., 271, 307 (1993) 
  8. Wang J, Gao L, Sun J, Li Q, J. Colloid Interface Sci., 213(2), 552 (1999) 
  9. Strauss H, Heegn H, Strienitz I, Chem. Eng. Sci., 48, 323 (1993) 
  10. Li JG, Gao L, Guo JK, J. Mater. Sci. Lett., 21(6), 509 (2002) 
  11. Girod G, Lamarche JM, Foissy A, J. Colloid Interface Sci., 121, 265 (1988) 
  12. BOHMER MR, SOFI YE, FOISSY A, J. Colloid Interface Sci., 164(1), 126 (1994) 
  13. Kilau HW, Pahlman JE, Colloids Surf. A: Physicochem. Eng. Asp., 26, 217 (1987)
  14. Varadara R, Bock J, Brons N, Zushma S, J. Colloid Interface Sci., 167, 207 (1994) 
  15. van Oss CJ, Chaudhury MK, Good RJ, Adv. Colloid Interface Sci., 28, 35 (1987) 
  16. van Oss CJ, Chaudhury MK, Good RJ, Chem. Rev., 88, 927 (1998) 
  17. van Oss CJ, Colloids Surf. A: Physicochem. Eng. Asp., 78, 1 (1993) 
  18. van Oss CJ, Colloids Surf. B: Biointerfaces, 5, 91 (1995) 
  19. Drago RS, Vogel GC, Needham TE, J. Am. Chem. Soc., 99, 3203 (1977) 
  20. Chibowski E, Perea-Carpio R, J. Colloid Interface Sci., 240(2), 473 (2001) 
  21. Stokes RJ, Evans DF, Fundamentals of Interfacial Engineering, Wiley, New York (1996)
  22. Frith WJ, Lips A, Adv. Colloid Interface Sci., 98, 341 (2002) 
  23. Hoffman RL, J. Rheol., 42(1), 111 (1998) 
  24. Chadwick MD, Goodwin JW, Vincent B, Lawson EJ, Mills PDA, Colloids Surf. A: Physicochem. Eng. Asp., 196, 235 (2002) 
  25. Jung H, Lee K, Shim SE, Yang S, Lee JM, Lee H, Choe S, Macromol. Res., 12(5), 512 (2004)
  26. Krieger IM, Dougherty TJ, Trans. Soc. Rheol., 3, 137 (1959) 
  27. Barnes HA, Hutton JF, Walters K, An Introduction to Rheology, Elsevier, New York (1989)