화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.11, No.6, 857-863, November, 2005
Estimation of the Kinetic Triplet of Polystyrene Pyrolysis from Isothermal Kinetic Results
E-mail:
This paper presents a method to estimate the Arrhenius parameters as well as a reaction model of the pyrolysis of polystyrene (PS) from isothermal kinetic results. We used a state-of-the-art thermobalance (TB) that is able to continuously monitor weight decreases with respect to time under pure static conditions. A best fit of the theoretical reduced-time plot (RTP) to the experimental one led to the conclusion that the reaction model for PS pyrolysis within a reaction temperature range of 658~673 K would be accounted for by the "Avrami-Erofeev" model, n(1-α)[-1n(1-α)(n-1)/n, where n has an average value of 2.25 from four measurements estimated at 658, 663, 668, and 673 K. The n value increased slightly upon increasing the reaction temperature, possibly suggesting that PS pyrolysis may be represented by a complex reaction that may be accounted for by a series of decomposition reactions of PS intermediates. The Arrhenius parameters obtained from the model-fitting method using the Avrami-Erofeev model agreed well with the values from the model-free methods obtained isothermal measurements; hence, these results properly uphold the correctness of the kinetic triplet that we determined.
  1. Vyazovkin S, Wight CA, Thermochim. Acta, 340-341, 53 (1999)
  2. Maciejewski M, Thermochim. Acta, 355(1-2), 145 (2000)
  3. Sewry JD, Brown ME, Thermochim. Acta, 390(1-2), 217 (2002)
  4. Eom Y, Kim S, Kim J, Park Y, Myung S, Jeon J, J. KSEE, 26, 481 (2004)
  5. Kim S, Kim Y, Jang E, Chem. Lett., 33, 1310 (2004)
  6. Kim S, Hwang IH, Kim YK, J. Ind. Eng. Chem., 10(3), 484 (2004)
  7. Kim S, Kim Y, J. Anal. Pyrolysis, 73, 117 (2005) 
  8. Kim S, Kim YC, Kim YM, Eom Y, Chem. Lett., 34, 1268 (2005)
  9. Marcilla A, Beltran M, Polym. Degrad. Stabil., 50, 117 (1995)
  10. Westerhout RW, Waanders J, Kuipers JA, Vanswaaij WP, Ind. Eng. Chem. Res., 36(6), 1955 (1997)
  11. Sorum L, Gronli MG, Hustad JE, Fuel, 80, 1217 (2001)
  12. Aguado R, Olazar M, Gaisan B, Prieto R, Bilbao J, Chem. Eng. J., 92(1-3), 91 (2003)
  13. Yang J, Miranda R, Roy C, Polym. Degrad. Stabil., 73, 455 (2001)
  14. Brown ME, Dollimore D, Galwey AK, in Comprehensive Chemical Kinetics, C. H. Bamford, and C. F. H. Tipper, Eds., Vol. 22, pp. 41-113, Elsevier Press, Amsterdam (1980)
  15. Kwon TW, Kim SD, Fung DPC, Fuel, 67, 530 (1988)
  16. Gao Z, Amasaki I, Nakada, J. Anal. Appl. Pyrolysis, 67, 1 (2003)
  17. Bourbigot S, Gilman JW, Wilkie CA, Polym. Degrad. Stabil., 84, 483 (2004)
  18. Attar A, AIChE J., 24, 106 (1978)
  19. Tanaka H, Thermochim. Acta, 267, 29 (1995)
  20. Lyon RE, Thermochim. Acta, 297(1-2), 117 (1997)
  21. Kissinger HE, Anal. Chem., 29, 1702 (1957)
  22. Friedman HL, J. Polym. Sci. Part C, 6, 183 (1965)
  23. Chumbhale VR, Kim JS, Lee WY, Song SH, Lee SB, Choi MJ, J. Ind. Eng. Chem., 11(2), 253 (2005)
  24. Lim ST, Choi HJ, Jhon MS, J. Ind. Eng. Chem., 9(1), 51 (2003)