Journal of Physical Chemistry B, Vol.109, No.19, 9226-9230, 2005
Charge carrier transport properties in polymer liquid crystals containing oxadiazole and amine moieties in the same side chain
Steady-state and transient photocurrent measurements were carried out to study the charge carrier transport properties of polymer liquid crystal (LC) containing oxadiazole (OXD) and amine moieties in the same side chain. The steady-state photocurrent measurement with asymmetric electrodes of ITO and A1 and a short penetration depth of the illumination light indicated that both electrons and holes can be transported in this film. The transient hole photocurrent observed by time-of-flight (TOF) experiments was dispersive at room temperature. The hole drift mobility significantly depended on temperature and electric field and was determined to be 6.1 x 10(-8) cm(2)/Vs at a field of 9.1 x 10(5) V/cM. According to the disorder formalism, the Gaussian width of the density of states was determined to be 170 meV for holes. Despite the indication of possible electron transport in this film, we could not determine the electron mobility by TOF experiments due to strong dispersive photocurrent. We discuss the present charge transport properties of the film in relation to a large dipole attributed to an electrical push-pull structure of p-dimethylaminophenyl-substitited OXD moiety in polymer LC and its electroluminescent properties.