화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.109, No.20, 10371-10380, 2005
Dissociative chemisorption and energy transfer for methane on Ir(111)
A 3-parameter local hot spot model of gas-surface reactivity is employed to analyze and predict dissociative sticking coefficients for CH4 incident on Ir(111) under varied nonequilibrium and equilibrium conditions. One Ir surface oscillator and the molecular vibrations, rotations, and translational energy directed along the surface normal are treated as active degrees of freedom in the 14 dimensional microcanonical kinetics. The threshold energy for CH4 dissociative chemisorption on Ir(111) derived from modeling molecular beam experiments is E-0 = 39 kJ/mol. Over more than 4 orders of magnitude of variation in sticking, the average relative discrepancy between the beam and theoretically derived sticking coefficients is 88%. The experimentally observed enhancement in dissociative sticking as beam translational energies decrease below similar to 10 kJ/mol is consistent with a parallel dynamical trapping/energy transfer channel that likely fails to completely thermalize the molecules to the surface temperature. This trapping-mediated sticking, indicative of specific energy transfer pathways from the surface under nonequilibrium conditions, should be a minor contributor to the overall dissociative sticking at thermal equilibrium. Surprisingly, the CH4 dissociative sticking coefficient predicted for Ir(111) surfaces at thermal equilibrium, based on the molecular beam experiments, is roughly 4 orders of magnitude higher than recent measurements on supported nanoscale Ir catalysts at 1 bar pressure, which suggests that substantial improvements in catalyst turnover rates may be possible.