Journal of Physical Chemistry B, Vol.109, No.21, 10640-10646, 2005
Interaction of water with single-walled carbon nanotubes: Reaction and adsorption
The interaction of water vapor with carbon nanotubes at room temperature has been investigated using Fourier transform (FT) IR spectroscopy and density functional theory (DFT) calculations. FTIR data indicate that water molecules adsorb on single-walled carbon nanotubes at room temperature. Comparison to previous studies suggests that the water forms hydrogen-bonded structures inside the nanotubes. Analysis of the FTIR data demonstrates that a small number of water molecules react with the nanotubes, forming C-O bonds, whereas a majority of the water molecules adsorb intact. The DFT calculations show that cleavage of an O-H bond upon adsorption to form adsorbed -H and -OH groups is energetically favorable at defect sites on nanotubes.