화학공학소재연구정보센터
Rheologica Acta, Vol.44, No.4, 379-395, 2005
Impact of reinforcing filler on the dynamic moduli of elastomer compounds under shear deformation in relation to wet sliding friction
In pursuit of a better understanding of the relationship between wet sliding friction and bulk viscoelastic properties of elastomer compounds, especially the contribution from different reinforcing fillers, the linear thermorheological behavior, the nonlinear dynamic moduli under shear deformation (for strain up to about 140%), and the wet sliding friction have been characterized in detail for crosslinked compounds of low-cis polybutadiene filled with different reinforcing fillers including carbon black, graphitized carbon black, and precipitated silica. We examine the scenario of possible extra energy dissipation via higher harmonic excitation in rubber compounds coupled with dynamic deformation consisting of components at many frequencies during sliding of rubber on a rough surface. While no straightforward explanation is identified relating the observed difference in wet sliding friction arising from different fillers to the bulk viscoelastic properties, some unexpected viscoelastic features arising from the compounds are observed.